
Automated Analog Circuit Synthesis using a
Linear Representation

Jason D. Lohn1 and Silvano P. Colombano2

1 Caelum Research Corporation, NASA Ames Research Center,
Mail Stop 269-1, Moffett Field, CA 94035-1000, USA

email: jlohn@ptolemy.arc.nasa.gov
2 Computational Sciences Division, NASA Ames Research Center,

Mail Stop 269-1, Moffett Field, CA 94035-1000, USA
email: scolombano@mail.arc.nasa.gov

J.D. Lohn, S.P. Colombano, “Automated Analog Circuit Synthesis using a Linear Rep-

resentation,” Proc. of the Second Int’l Conf on Evolvable Systems: From Biology to

Hardware, Springer-Verlag, Berlin, 1998, pp. 125-133.

Abstract. We present a method of evolving analog electronic circuits
using a linear representation and a simple unfolding technique. While
this representation excludes a large number of circuit topologies, it is ca-
pable of constructing many of the useful topologies seen in hand-designed
circuits. Our system allows circuit size, circuit topology, and device val-
ues to be evolved. Using a parallel genetic algorithm we present initial
results of our system as applied to two analog filter design problems.
The modest computational requirements of our system suggest that the
ability to evolve complex analog circuit representations in software is
becoming more approachable on a single engineering workstation.

1 Introduction

Analog circuits are of great importance in electronic system design since the
world is fundamentally analog in nature. While the amount of digital design
activity far outpaces that of analog design, most digital systems require analog
modules for interfacing to the external world. It was recently estimated that ap-
proximately 60% of CMOS-based application-specific integrated circuit (ASIC)
designs incorporated analog circuits [1]. With challenging analog circuit design
problems and fewer analog design engineers, there are economic reasons for au-
tomating the analog design process, especially time-to-market considerations.
Techniques for analog circuit design automation began appearing about two

decades ago. These methods incorporated heuristics [13], knowledge-bases [4],
and simulated annealing [11]. Efforts using techniques from evolutionary com-
putation have appeared over the last few years. These include the use of genetic
algorithms (GAs) [5] to select filter component sizes [6], to select filter topolo-
gies [3], and to design operational amplifiers using a small set of topologies [10].
The research of Koza and collaborators [8] on analog circuit synthesis by means of
genetic programming (GP) is likely the most successful approach to date. Unlike
previous systems, the component values, number of components, and the circuit
topologies are evolved. The genetic programming system begins with minimal



knowledge of analog circuit design and creates circuits based on a novel circuit-
encoding technique. Various analog filter design problems have been solved using
genetic programming (e.g., [9]), and an overview of these techniques, including
eight analog circuit synthesis problems, is found in [8]. A comparison of genetic-
based techniques applied to filter design appears in [14] and work on evolving
CMOS transistors for function approximation [12] has also recently appeared.

The system we present here was motivated by the genetic programming sys-
tem described above. Our investigation centers on whether a linear representa-
tion and simple unfolding technique, coupled with modest computer resources,
could be effective for evolving analog circuits. In the GP system, a hierarchical
representation is manipulated by evolution, and a biologically-inspired encoding
scheme is used to construct circuits. In our system we use a linear genome repre-
sentation and a simple unfolding process to construct circuits. As mentioned, our
current system is topology-constrained, yet such constraints were deemed rea-
sonable since a vast number of circuit topologies are attainable. Our technique
presented below differs from the previous GA techniques in that we allow both
topology and component sizes to be evolved. In [14], a GA approach is presented
in which topologies and component values are evolved for circuits containing up
to 15 components. Here we use dynamically-sized representations in the GA so
that circuits containing up to 100 components can be evolved. Using a clus-
ter of six engineering workstations (1996 Sun Ultra), we present evolved circuit
solutions to two filter design problems.

2 Linear Representation

Circuits are represented in the genetic algorithm as a list of bytecodes which
are interpreted during a simple unfolding process. A fixed number of bytecodes
represent each component as follows: the first is the opcode, and the next three
represent the component value. Component value encoding is discussed first.

Using three bytes allows the component values to take on one of 2563 values,
a sufficiently fine-grained resolution. The raw numerical value of these bytes
was then scaled into a reasonable range, depending on the type of component.
Resistor values were scaled sigmoidally between 1 and 100K ohms using 1/(1 +
exp(−1.4(10x−8))) so that roughly 75% of the resistor values were biased to be
less than 10K ohms. Capacitor values were scaled between approximately 10 pF
and 200 µF and inductors between roughly 0.1 mH and 1.5 H.

The opcode is an instruction to execute during circuit construction. In the
current design of our system, we use only “component placement” opcodes
which accomplish placement of resistors, capacitors, and inductors. The five basic
opcode types are: x-move-to-new, x-cast-to-previous, x-cast-to-ground, x-cast-
input, x-cast-to-output, where x can be replaced by R (resistor), C (capacitor),
or L (inductor). In a circuit design problem involving only inductors and capac-
itors (an LC circuit), ten opcodes would be available to construct circuits (five
for capacitors and five for inductors).



The circuit is constructed between fixed input and output terminals as shown
in Fig. 1. An ideal AC input voltage source vs is connected to ground and to a
source resistor Rs. The circuit’s output voltage taken across a load resistor Rl.

evolved
circuit

vs

end nodestart node

~

output
voltage

Rl

Rs

Fig. 1. Artificially evolved circuit is located between fixed input and output terminals
(vs is an ideal ac voltage source, Rs is the source resistance, Rl is the load resistance).

To construct the circuit, a “current node” register (abbreviated CN; with
“current” used in the sense of present, not electrical current) is used and initial-
ized to the circuit’s input node. The unfolding process then proceeds to interpret
each opcode and associated component values, updating the CN register if nec-
essary. The x-move-to-new opcode places one end of component x at the current
node (specified by the CN register) and the other at a newly-created node. The
CN register is then assigned the value of the newly-created node. The “x-cast-
to-” opcodes place one end of component x at the current node and the other
at either the ground, input, output, or previously-created node. After executing
these opcodes, the CN register remains unchanged. The meanings of each op-
code are summarized in Table 1. All five opcode types place components into the
circuit, although they could be designed to do other actions as well, e.g., move
without placement.

Opcode Destination Node CN Register

x-move-to-new newly-created node assigned the newly-created node

x-cast-to-previous previous node unchanged

x-cast-to-ground ground node unchanged

x-cast-to-input input node unchanged

x-cast-to-output output node unchanged

Table 1. Summary of opcode types used in current system. x denotes a resistor,
capacitor, or inductor.

The list of bytecodes is a variable-length list (the length is evolved by the
GA). Thus, circuits of various sizes are constructed. When the decoding process



reaches the last component to place in the circuit, we arbitrarily chose to have
the last node (value in CN) connected to the output terminal by a wire. By
doing so, we eliminate unconnected branches.
We had two goals in designing the above encoding scheme. First, we wanted

to see if a very simple set of primitives encoded in a linear fashion could indeed
be used to successfully evolve circuits. Second, we wanted to minimize computer
time during the genetic algorithm run. By keeping the decoding process minimal,
the total time for fitness evaluations is thus reduced. Along the same lines, we
wanted to keep circuit “repair” operations (e.g., removal of unconnected nodes)
to a minimum since these also slow the system down.
The most significant restriction of our technique is that it cannot support

all possible circuit topologies: circuit branches off of the main “constructing
thread” cannot, in general, contain more than one node (there are some excep-
tions to this). The constructing thread is the sequence of components that are
created by the x-move-to-new opcode. The constructing thread itself can be of
varying lengths and can contain both series and parallel configurations. In spite
of these limitations, our system allows creation of circuits with a large variety
of topologies, especially topologies seen in hand-designed circuits (e.g., ladder
constructs). We have lessened the topology restrictions somewhat by allowing
“move-to” opcodes and will report on these efforts in the future.

3 Genetic Algorithm

The genetic algorithm operates on a population of dynamically-sized bytecode
arrays. In practice we imposed a maximum size of about 400 bytes (100 circuit
components) in order to accommodate population sizes of up to 18,000 indi-
viduals in our GA runs. The crossover and mutation (per locus) rates were set
at 0.8 and 0.2 respectively. An overview of the evaluation process is depicted
in Fig. 2. As in the GP system mentioned above, we used the Berkeley SPICE
circuit simulation program to simulate our circuits. The array of bytecodes was
interpreted in the manner previously described, and resulted in a SPICE netlist
representation. The netlist is processed by SPICE and the output is then used
to compute fitness for the individual. Fitness was calculated as the absolute
value of the difference of the individual’s output and the target output. These
error values were summed across evaluation points, with error being the distance
between the target and the value the individual produced.
The parallel genetic algorithm implemented uses master/slave style paral-

lelism [2] over a network of UNIX-based computers. A controlling host computer
performs GA functions and distributes a population of bytecoded-individuals to
specified number of worker nodes using socket connections. The worker nodes
decode the individuals into SPICE netlists which are then fed into SPICE via
FIFO pipes to minimize disk activity. Fitness is calculated using SPICE’s out-
put, and then sent back to the host. Hundreds of individuals (and fitness scores)
are packaged into a single message so that external network congestion delays are
minimized. The SPICE program itself required little modification since it runs



SPICE
circuit

simulation
decode

bytecodes

netlist

fitness
calculation

Fig. 2. Overview of circuit evaluation process starting with bytecoded representation
and ending with fitness score.

as a separate process. Written in the C programming language, the system cur-
rently runs on Sun workstations and is portable to other UNIX systems (e.g., we
have ported the software to PCs running UNIX). This allows the system to run
on UNIX-based clusters comprised of computers from different manufacturers.

4 Experimental Results

We attempted to evolve two analog filter circuits. The choice of using passive
analog filters was inspired by the previous studies and is a good choice for testing
the effectiveness of our system for three reasons. First, all components have
two-terminals, the minimum number possible. If the proposed system could not
evolve useful circuits using two-terminaled devices, then attempting to evolve
circuits using more complex components (e.g., transistors) would likely prove
ineffective. Second, there are no energy sources required within the circuit which
further reduces the complexity. Lastly, filter design is a well-understood discipline
within circuit design. Its “design space” has been greatly explored [7] which
allows us to compare our evolved designs to well-known designs.
The problems we present below are both low-pass filters. A low-pass filter is

a circuit the allows low frequencies to pass through it, but stops high frequen-
cies from doing so. In other words, it “filters out” frequencies above a specified
frequency. The unshaded area in Fig. 3 depicts the region of operation for low-
pass filters. Below the frequency fp the input signal is passed to the output,
potentially reduced (attenuated) by Kp decibels (dB). This region is known as
the passband. Above the frequency fs, the input signal is markedly decreased
by Ks decibels. As labeled, this region is called the stopband. Between the pass-
band and stopband the frequency response curve transitions from low to high
attenuation. The parameter located in this region, fc, is known as the cutoff
frequency.



frequency

Kp

fp fs

Ks

fc

passband stopband

at
te

n
u

at
io

n
 (

d
B

)

Fig. 3. Low-pass filter terminology and specifications. The crosshatched regions repre-
sent out-of-specification areas. An example frequency response curve that meets spec-
ifications is shown.

4.1 Electronic Stethoscope Circuit

The first circuit we attempted to evolve is one that is suitable for use in an
electronic stethoscope. In this application, it is desired to filter out the extra-
neous high-frequency sounds picked up by a microphone which make it difficult
to listen to (low-frequency) bodily sounds (e.g., a heart beating). As such, the
frequency response specifications do not need to be extremely accurate since we
are dealing with audible frequencies and the human ear cannot discern frequen-
cies that are close together. The target frequency response data was taken from
an actual electronic stethoscope, which was built with a cutoff frequency of 796
Hz corresponding to an output voltage of approximately 1 volt. This circuit is
relatively easy to design and so we chose it as our first problem to solve.
The GA was allowed to use resistors and capacitors during evolution, re-

sulting in an RC low-pass filter. The evolved circuit is shown in Fig. 4 and its
frequency response, which matches almost exactly the target is shown in Fig. 5.

4.2 Butterworth Low-pass Filter

The second low-pass filter we evolved was more difficult. We chose a circuit that
can be built using a 3rd-order Butterworth filter [7]. The specifications are as
follows:

fp = 925 Hz Kp = 3.0103 dB
fs = 3200 Hz Ks = 22 dB

Such a filter design can be derived using a ladder structure and component
values found in published tables. The GA was allowed to use capacitors and in-
ductors during evolution, resulting in an LC low-pass filter. The evolved circuit
that meets these specifications is shown in Fig. 6 and its frequency response is



R1 1

+

-
5V

V1 C1 0.000162 671.8973R3 RL

1E14

5.806489

R2

Fig. 4. Evolved low-pass filter for use in an electronic stethoscope (units are ohms and
farads).

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 10 100 1000 10000

V
ol

ts

Frequency (Hz)

Target
Output

Fig. 5. Nearly identical frequency response curves for evolved and actual electronic
stethoscope circuit. The frequency axis is scaled logarithmically.



shown in Fig. 7. It was found in generation 22 of a GA run that lasted approxi-
mately four hours using six Sun Ultra workstations working in parallel.

C2

3.0245E-7

0.16886

L4Rs
1K

+

-
2V

V1

C1

0.0000780.77637

L2
L5

0.50176

0.28838

L1

1K
RL

1.14991

L3

Fig. 6. Evolved 3rd-order Butterworth low-pass filter (units are ohms, farads, and
henries).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000

V
ol

ts

Frequency (Hz)

Kp=3.01 dB Ks=22 dB

Fig. 7. Frequency response curve for evolved 3rd-order Butterworth low-pass filter. At-
tenuation specifications are also shown. The frequency axis is a scaled logarithmically.

5 Discussion

We have shown that a genetic algorithm using a simple linear circuit represen-
tation is capable of evolving two circuits of low to medium difficulty. The circuit
construction method devised uses a very simple set of primitives encoded in a



linear fashion. Such a method helps to minimize the computer time required to
evolve circuits by keeping the decoding and repairing processes shorter. Although
this technique is topology-limited, the ability of our system to produce useful
circuits was demonstrated. It is likely that these topological space restrictions
are favorable to many filter designs, especially filters that are known to have less
complex branching patterns (e.g., ladder structures). We intend to build upon
this technique to allow for greater topologies and three-terminal devices such
as transistors. With the previous successes in evolving analog circuits, and the
encouraging early results of our system, we are optimistic that a subset of ana-
log circuit design tasks may be routinely accomplished by means of evolutionary
computation in the future.

6 Acknowledgments

The authors would like to thank M. Lohn, D. Stassinopoulos, G. Haith, and the
anonymous reviewers for their helpful suggestions and comments.

References

1. G. Gielen, W. Sansen, Symbolic Analysis for Automated Design of Analog Inte-
grated Circuits, Boston, MA: Kluwer, 1991.

2. D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learn-
ing, Addison-Wesley, Reading, Mass, 1989.

3. J.B. Grimbleby, “Automatic Analogue Network Synthesis using Genetic Algo-
rithms,” Proc. First Int. Conf. Genetic Algorithms in Engineering Systems: In-
novations and Applications (GALESIA), 1995, pp. 53-58.

4. R. Harjani, R.A. Rutenbar, L.R. Carey, “A Prototype Framework for Knowledge-
Based Analog Circuit Synthesis,” Proc. 24th Design Automation Conf., 1987.

5. J.H. Holland, Adaptation in Natural and Artificial Systems, Univ. of Michigan
Press, Ann Arbor, 1975.

6. D.H. Horrocks, Y.M.A. Khalifa, “Genetically Derived Filters using Preferred Value
Components,” Proc. IEE Colloq. on Linear Analogue Circuits and Systems, Ox-
ford, UK, 1994.

7. L.P. Huelsman, Active and Passive Analog Filter Design, New York: McGraw-Hill,
1993.

8. J.R. Koza, F.H. Bennett, D. Andre, M.A. Keane, F. Dunlap, “Automated Synthesis
of Analog Electrical Circuits by Means of Genetic Programming,” IEEE Trans. on
Evolutionary Computation, vol. 1, no. 2, July, 1997, pp. 109–128.

9. J.R. Koza, F.H. Bennett, J.D. Lohn, F. Dunlap, M.A. Keane, D. Andre, “Use
of Architecture-Altering Operations to Dynamically Adapt a Three-Way Analog
Source Identification Circuit to Accommodate a New Source,” in Genetic Program-
ming 1997 Conference, J.R. Koza, K.Deb, M.Dorigo, D.B. Fogel, M. Garzon, H.
Iba, and R.L. Riolo, (eds), Morgan Kaufmann, 1997, pp. 213–221.

10. M.W. Kruiskamp, Analog Design Automation using Genetic Algorithms and Poly-
topes, Ph.D. Thesis, Dept. of Elect. Engr., Eindhoven University of Technology,
Eindhoven, The Netherlands, 1996.



11. E.S. Ochotta, R.A. Rutenbar, L.R. Carley, “Synthesis of High-Performance Analog
Circuits in ASTRX/OBLX,” IEEE Trans. Computer-Aided Design, vol. 15, pp.
273–294, 1996.

12. A. Stoica, “On Hardware Evolvability and Levels of Granularity,” Proc. 1997 Int.
Conf. Intell. Systems and Semiotics, 1997, pp. 244-247.

13. G.J. Sussman, R.M. Stallman, “Heuristic Techniques in Computer-Aided Circuit
Analysis,” IEEE Trans. Circuits and Systems, vol. 22, 1975.

14. R.S. Zebulum, M.A. Pacheco, M. Vellasco, “Comparison of Different Evolution-
ary Methodologies Applied to Electronic Filter Design,” 1998 IEEE Int. Conf. on
Evolutionary Computation, Piscataway, NJ: IEEE Press, 1998, pp. 434–439.


